Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structure-function analysis of a broad specificity Populus trichocarpa endo-β-glucanase reveals an evolutionary link between bacterial licheninases and plant XTH gene products.

Identifieur interne : 002477 ( Main/Exploration ); précédent : 002476; suivant : 002478

Structure-function analysis of a broad specificity Populus trichocarpa endo-β-glucanase reveals an evolutionary link between bacterial licheninases and plant XTH gene products.

Auteurs : Jens M. Eklöf [Suède] ; Shaheen Shojania ; Mark Okon ; Lawrence P. Mcintosh ; Harry Brumer

Source :

RBID : pubmed:23572521

Descripteurs français

English descriptors

Abstract

The large xyloglucan endotransglycosylase/hydrolase (XTH) gene family continues to be the focus of much attention in studies of plant cell wall morphogenesis due to the unique catalytic functions of the enzymes it encodes. The XTH gene products compose a subfamily of glycoside hydrolase family 16 (GH16), which also comprises a broad range of microbial endoglucanases and endogalactanases, as well as yeast cell wall chitin/β-glucan transglycosylases. Previous whole-family phylogenetic analyses have suggested that the closest relatives to the XTH gene products are the bacterial licheninases (EC 3.2.1.73), which specifically hydrolyze linear mixed linkage β(1→3)/β(1→4)-glucans. In addition to their specificity for the highly branched xyloglucan polysaccharide, XTH gene products are distinguished from the licheninases and other GH16 enzyme subfamilies by significant active site loop alterations and a large C-terminal extension. Given these differences, the molecular evolution of the XTH gene products in GH16 has remained enigmatic. Here, we present the biochemical and structural analysis of a unique, mixed function endoglucanase from black cottonwood (Populus trichocarpa), which reveals a small, newly recognized subfamily of GH16 members intermediate between the bacterial licheninases and plant XTH gene products. We postulate that this clade comprises an important link in the evolution of the large plant XTH gene families from a putative microbial ancestor. As such, this analysis provides new insights into the diversification of GH16 and further unites the apparently disparate members of this important family of proteins.

DOI: 10.1074/jbc.M113.462887
PubMed: 23572521
PubMed Central: PMC3668736


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structure-function analysis of a broad specificity Populus trichocarpa endo-β-glucanase reveals an evolutionary link between bacterial licheninases and plant XTH gene products.</title>
<author>
<name sortKey="Eklof, Jens M" sort="Eklof, Jens M" uniqKey="Eklof J" first="Jens M" last="Eklöf">Jens M. Eklöf</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), SE-106 91 Stockholm, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), SE-106 91 Stockholm</wicri:regionArea>
<wicri:noRegion>SE-106 91 Stockholm</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shojania, Shaheen" sort="Shojania, Shaheen" uniqKey="Shojania S" first="Shaheen" last="Shojania">Shaheen Shojania</name>
</author>
<author>
<name sortKey="Okon, Mark" sort="Okon, Mark" uniqKey="Okon M" first="Mark" last="Okon">Mark Okon</name>
</author>
<author>
<name sortKey="Mcintosh, Lawrence P" sort="Mcintosh, Lawrence P" uniqKey="Mcintosh L" first="Lawrence P" last="Mcintosh">Lawrence P. Mcintosh</name>
</author>
<author>
<name sortKey="Brumer, Harry" sort="Brumer, Harry" uniqKey="Brumer H" first="Harry" last="Brumer">Harry Brumer</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23572521</idno>
<idno type="pmid">23572521</idno>
<idno type="doi">10.1074/jbc.M113.462887</idno>
<idno type="pmc">PMC3668736</idno>
<idno type="wicri:Area/Main/Corpus">002639</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002639</idno>
<idno type="wicri:Area/Main/Curation">002639</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002639</idno>
<idno type="wicri:Area/Main/Exploration">002639</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structure-function analysis of a broad specificity Populus trichocarpa endo-β-glucanase reveals an evolutionary link between bacterial licheninases and plant XTH gene products.</title>
<author>
<name sortKey="Eklof, Jens M" sort="Eklof, Jens M" uniqKey="Eklof J" first="Jens M" last="Eklöf">Jens M. Eklöf</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), SE-106 91 Stockholm, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), SE-106 91 Stockholm</wicri:regionArea>
<wicri:noRegion>SE-106 91 Stockholm</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shojania, Shaheen" sort="Shojania, Shaheen" uniqKey="Shojania S" first="Shaheen" last="Shojania">Shaheen Shojania</name>
</author>
<author>
<name sortKey="Okon, Mark" sort="Okon, Mark" uniqKey="Okon M" first="Mark" last="Okon">Mark Okon</name>
</author>
<author>
<name sortKey="Mcintosh, Lawrence P" sort="Mcintosh, Lawrence P" uniqKey="Mcintosh L" first="Lawrence P" last="Mcintosh">Lawrence P. Mcintosh</name>
</author>
<author>
<name sortKey="Brumer, Harry" sort="Brumer, Harry" uniqKey="Brumer H" first="Harry" last="Brumer">Harry Brumer</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Catalytic Domain (MeSH)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Glycoside Hydrolases (chemistry)</term>
<term>Glycoside Hydrolases (genetics)</term>
<term>Glycoside Hydrolases (metabolism)</term>
<term>Glycosyltransferases (chemistry)</term>
<term>Glycosyltransferases (genetics)</term>
<term>Glycosyltransferases (metabolism)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>Protein Structure, Secondary (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Domaine catalytique (MeSH)</term>
<term>Glycosidases (composition chimique)</term>
<term>Glycosidases (génétique)</term>
<term>Glycosidases (métabolisme)</term>
<term>Glycosyltransferase (composition chimique)</term>
<term>Glycosyltransferase (génétique)</term>
<term>Glycosyltransferase (métabolisme)</term>
<term>Phylogenèse (MeSH)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Structure secondaire des protéines (MeSH)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Glycoside Hydrolases</term>
<term>Glycosyltransferases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Glycoside Hydrolases</term>
<term>Glycosyltransferases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Glycoside Hydrolases</term>
<term>Glycosyltransferases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Glycosidases</term>
<term>Glycosyltransferase</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glycosidases</term>
<term>Glycosyltransferase</term>
<term>Populus</term>
<term>Protéines bactériennes</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glycosidases</term>
<term>Glycosyltransferase</term>
<term>Protéines bactériennes</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Catalytic Domain</term>
<term>Evolution, Molecular</term>
<term>Phylogeny</term>
<term>Protein Structure, Secondary</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Domaine catalytique</term>
<term>Phylogenèse</term>
<term>Structure secondaire des protéines</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The large xyloglucan endotransglycosylase/hydrolase (XTH) gene family continues to be the focus of much attention in studies of plant cell wall morphogenesis due to the unique catalytic functions of the enzymes it encodes. The XTH gene products compose a subfamily of glycoside hydrolase family 16 (GH16), which also comprises a broad range of microbial endoglucanases and endogalactanases, as well as yeast cell wall chitin/β-glucan transglycosylases. Previous whole-family phylogenetic analyses have suggested that the closest relatives to the XTH gene products are the bacterial licheninases (EC 3.2.1.73), which specifically hydrolyze linear mixed linkage β(1→3)/β(1→4)-glucans. In addition to their specificity for the highly branched xyloglucan polysaccharide, XTH gene products are distinguished from the licheninases and other GH16 enzyme subfamilies by significant active site loop alterations and a large C-terminal extension. Given these differences, the molecular evolution of the XTH gene products in GH16 has remained enigmatic. Here, we present the biochemical and structural analysis of a unique, mixed function endoglucanase from black cottonwood (Populus trichocarpa), which reveals a small, newly recognized subfamily of GH16 members intermediate between the bacterial licheninases and plant XTH gene products. We postulate that this clade comprises an important link in the evolution of the large plant XTH gene families from a putative microbial ancestor. As such, this analysis provides new insights into the diversification of GH16 and further unites the apparently disparate members of this important family of proteins.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23572521</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>08</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>288</Volume>
<Issue>22</Issue>
<PubDate>
<Year>2013</Year>
<Month>May</Month>
<Day>31</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Structure-function analysis of a broad specificity Populus trichocarpa endo-β-glucanase reveals an evolutionary link between bacterial licheninases and plant XTH gene products.</ArticleTitle>
<Pagination>
<MedlinePgn>15786-99</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M113.462887</ELocationID>
<Abstract>
<AbstractText>The large xyloglucan endotransglycosylase/hydrolase (XTH) gene family continues to be the focus of much attention in studies of plant cell wall morphogenesis due to the unique catalytic functions of the enzymes it encodes. The XTH gene products compose a subfamily of glycoside hydrolase family 16 (GH16), which also comprises a broad range of microbial endoglucanases and endogalactanases, as well as yeast cell wall chitin/β-glucan transglycosylases. Previous whole-family phylogenetic analyses have suggested that the closest relatives to the XTH gene products are the bacterial licheninases (EC 3.2.1.73), which specifically hydrolyze linear mixed linkage β(1→3)/β(1→4)-glucans. In addition to their specificity for the highly branched xyloglucan polysaccharide, XTH gene products are distinguished from the licheninases and other GH16 enzyme subfamilies by significant active site loop alterations and a large C-terminal extension. Given these differences, the molecular evolution of the XTH gene products in GH16 has remained enigmatic. Here, we present the biochemical and structural analysis of a unique, mixed function endoglucanase from black cottonwood (Populus trichocarpa), which reveals a small, newly recognized subfamily of GH16 members intermediate between the bacterial licheninases and plant XTH gene products. We postulate that this clade comprises an important link in the evolution of the large plant XTH gene families from a putative microbial ancestor. As such, this analysis provides new insights into the diversification of GH16 and further unites the apparently disparate members of this important family of proteins.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Eklöf</LastName>
<ForeName>Jens M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), SE-106 91 Stockholm, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shojania</LastName>
<ForeName>Shaheen</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Okon</LastName>
<ForeName>Mark</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>McIntosh</LastName>
<ForeName>Lawrence P</ForeName>
<Initials>LP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Brumer</LastName>
<ForeName>Harry</ForeName>
<Initials>H</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Canadian Institutes of Health Research</Agency>
<Country>Canada</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>04</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.-</RegistryNumber>
<NameOfSubstance UI="D016695">Glycosyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.1.207</RegistryNumber>
<NameOfSubstance UI="C473049">xyloglucan - xyloglucosyltransferase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.-</RegistryNumber>
<NameOfSubstance UI="D006026">Glycoside Hydrolases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.73</RegistryNumber>
<NameOfSubstance UI="C028020">licheninase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020134" MajorTopicYN="N">Catalytic Domain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006026" MajorTopicYN="N">Glycoside Hydrolases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016695" MajorTopicYN="N">Glycosyltransferases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017433" MajorTopicYN="N">Protein Structure, Secondary</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Carbohydrate Processing</Keyword>
<Keyword MajorTopicYN="N">Cellulase</Keyword>
<Keyword MajorTopicYN="N">Enzyme Kinetics</Keyword>
<Keyword MajorTopicYN="N">Enzyme Structure</Keyword>
<Keyword MajorTopicYN="N">Glycoside Hydrolases</Keyword>
<Keyword MajorTopicYN="N">Licheninase</Keyword>
<Keyword MajorTopicYN="N">Plant Cell Wall</Keyword>
<Keyword MajorTopicYN="N">Polysaccharide</Keyword>
<Keyword MajorTopicYN="N">Xyloglucan</Keyword>
<Keyword MajorTopicYN="N">Xyloglucan Endotransglycosylase/Hydrolase (XTH)</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>4</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>4</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>8</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23572521</ArticleId>
<ArticleId IdType="pii">M113.462887</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M113.462887</ArticleId>
<ArticleId IdType="pmc">PMC3668736</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Protoc. 2009;4(3):363-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19247286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1999 May;8(5):978-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10338008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W496-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18515350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Apr;16(4):874-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15020748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 1993 Oct 4;248:285-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8252539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Mar;140(3):946-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16415215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 1999 Jan;13(1):77-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21080266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3316-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 1995 Nov;6(3):277-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8520220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2001 Sep;47(1-2):55-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11554480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1998 May;15(5):528-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9580981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2009 Jun;75(4):820-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19004021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W363-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17517764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2010 Oct;78(13):2820-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20635417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Jun;11(3):301-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18434239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Jan;161(1):440-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23104861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Oct;68(2):201-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21707800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2006 Apr 7;357(4):1211-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16483609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Aug 31;287(36):30571-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22778272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 2001 Jun;20(2):177-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11495249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Feb 9;315(5813):804-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17289988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1995 Sep 15;232(3):849-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7588726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 1995 Feb 1;267(1):79-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7697670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jun;19(6):1947-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17557806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2001 Jun;9(6):513-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11435116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jan;35(Database issue):D846-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17088284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Magn Reson. 1999 Jan;136(1):92-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9887294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 Jul 16;340(4):783-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15223320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jan;197(1):111-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23078260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2012 Jul 06;3:152</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22783271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2011 Feb;79(2):365-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21069723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008;9:500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19038042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 1994 Mar;4(2):171-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8019132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Nov;64(4):645-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20822502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Apr 8;464(7290):908-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20376150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3320-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Aug;15(4):553-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9753780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2007 Jan;99(1):39-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17098750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2005 Nov;6(11):850-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16261190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D1178-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22110026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jan 27;311(5760):484-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16439654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2003 Oct;52(5):696-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14530136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Magn Reson. 1998 Sep;134(1):158-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9740742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1991 Nov 20;222(2):311-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1960729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 2009 Aug;44(4):213-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19548092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 2012 Mar;52(3):211-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22314702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Funct Genomics. 2005;6(2-3):177-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16211516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Aug 8;283(32):21853-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18511421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jun;153(2):456-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20421457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jan 1;32(Database issue):D138-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14681378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2000 Dec 29;1543(2):361-382</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11150614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2011;62:567-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21351878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2003 Aug;12(8):1652-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12876315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Sep;2(5):873-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2012;510:97-120</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22608723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Mar;134(3):1088-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14988479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Apr 27;282(17):12951-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17329246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18838391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2012 Mar 20;51(11):2224-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22360139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2006 Dec;15(12):2795-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17088319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1980 Apr;103(2):302-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7386863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2001 Aug;17(8):754-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11524383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2010;10:341</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21054875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2012 May 08;3:82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22639667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1596-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1995 Oct 30;374(2):221-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7589539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13585-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9811843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2009 Mar;5(3):e1000307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19282963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2005 Aug 15;390(Pt 1):105-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15804235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 May;18(4):371-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10406121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1997 Jan 15;321 ( Pt 2):557-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9020895</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Brumer, Harry" sort="Brumer, Harry" uniqKey="Brumer H" first="Harry" last="Brumer">Harry Brumer</name>
<name sortKey="Mcintosh, Lawrence P" sort="Mcintosh, Lawrence P" uniqKey="Mcintosh L" first="Lawrence P" last="Mcintosh">Lawrence P. Mcintosh</name>
<name sortKey="Okon, Mark" sort="Okon, Mark" uniqKey="Okon M" first="Mark" last="Okon">Mark Okon</name>
<name sortKey="Shojania, Shaheen" sort="Shojania, Shaheen" uniqKey="Shojania S" first="Shaheen" last="Shojania">Shaheen Shojania</name>
</noCountry>
<country name="Suède">
<noRegion>
<name sortKey="Eklof, Jens M" sort="Eklof, Jens M" uniqKey="Eklof J" first="Jens M" last="Eklöf">Jens M. Eklöf</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002477 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002477 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23572521
   |texte=   Structure-function analysis of a broad specificity Populus trichocarpa endo-β-glucanase reveals an evolutionary link between bacterial licheninases and plant XTH gene products.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23572521" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020